Laura M. McCaslin, Andreas W. Götz, Mark A. Johnson, R. Benny Gerber
The reaction of N2O5 at atmospheric interfaces has recently received considerable attention due to its importance in atmospheric chemistry. N2O5 reacts preferentially with Cl− to form ClNO2/NO3− (Cl− substitution), but can also react with H2O to form 2HNO3 (hydrolysis). In this paper, we explore these competing reactions in a theoretical study of the clusters N2O5/Cl−/nH2O (n=2–5), resulting in the identification of three reaction motifs. First, we uncovered an SN2-type Cl− substitution reaction of N2O5 that occurs very quickly due to low barriers to reaction. Second, we found a low-lying pathway to hydrolysis via a ClNO2 intermediate (two-step hydrolysis). Finally, we found a direct hydrolysis pathway where H2O attacks N2O5 (one-step hydrolysis). We find that Cl− substitution is the fastest reaction in every cluster. Between one-step and two-step hydrolysis, we find that one-step hydrolysis barriers are lower, making two-step hydrolysis (via ClNO2 intermediate) likely only when concentrations of Cl− are high.
17573764https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cphc.202200819